

D2.2.3 METADATA-BASED INDEXING

AND RANKING – 2
ND

 RELEASE

Advanced Search Services and Enhanced

Technological Solutions for the European Digital

Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.2.3 WP2.2

Prototype

V 1.3 – March 02 2012

Document. ref.: ASSETS.D2.2.3.CNR.WP2.2.V1.3

ASSETS Metadata-Based Indexing And Ranking D2.2.3 V1.3

Programme Name: ICT PSP

Project Number: 250527

Project Title: ASSETS

Partners: .. Coordinator: ENG (IT)

Contractors:

Document Number: D2.2.3

Work-Package:............................... 2.2

Deliverable Type: Prototype

Contractual Date of Delivery: 31 January 2012

Actual Date of Delivery: 02 March 2012

Title of Document: Metadata-Based Indexing and Ranking

Author(s): Diego Ceccarelli (CNR), Claudio Lucchese(CNR),

Raffaele Perego (CNR)

Approval of this report APPROVED – Luigi Briguglio (ENG)

Summary of this report: see Executive Summary

History: .. see Change History

Keyword List: ASSETS, metadata, learning to rank, bm25f

Availability public

Change HistoryChange HistoryChange HistoryChange History
Version Date Status Author

(Partner)

Description

0.1 13/01/2012 Draft ISTI-CNR Initial draft

0.2 27/01/2012 Draft ISTI-CNR Finalizing draft

0.3 01/02/2012 Draft ENG Peer reviewing by

Massimiliano Nigrelli (ENG)

1.0 20/02/2012 Pre-

Final

ISTI-CNR Integration of the reviews

1.1 29/02/2012 Pre-

Final

AIT Peer reviewing by Sergiu

Gordea

1.2 01/03/2012 Final ISTI-CNR Finalization.

1.3 02/03/2012 Final ENG Approval and Release

ASSETS Metadata-Based Indexing And Ranking D2.2.3 V1.3

Table of Contents

1. THIS INTRODUCTION 2

2. T2.2.1 POST QUERY PROCESSING 3

2.1 INTRODUCTION 3
2.2 SOFTWARE REQUIREMENTS OVERVIEW 3

2.2.1 Requirements 3
2.2.2 Use Cases 4

2.3 TECHNICAL DOCUMENTATION 6
2.3.1 UML Diagrams 6
2.3.2 Service APIs: REST services 7
2.3.3 Service APIs: Client API 8
2.3.4 Software Packaging 8
2.3.5 Installation and configuration 8

3. T 2.2.2 METADATA BASED RANKING 10

3.1 INTRODUCTION 10
3.2 SOFTWARE REQUIREMENTS OVERVIEW 10

3.2.1 Requirements 10
3.2.2 Use Cases 11

3.3 TECHNICAL DOCUMENTATION 12
3.3.1 UML Diagrams 12
3.3.2 BM25F Solr Plugin 15
3.3.3 Service APIs: REST services 16
3.3.4 Service APIs: Client API 17
3.3.5 Software Packaging 18
3.3.6 Installation and configuration 18

4. T 2.2.3 TEXT INDEXING AND RETRIEVAL 21

4.1 INTRODUCTION 21
4.2 SOFTWARE REQUIREMENTS OVERVIEW 21

4.2.1 Requirements 21
4.2.2 Use Cases 22

4.3 TECHNICAL DOCUMENTATION 23
4.3.1 UML Diagrams 23
4.3.2 Service APIs: REST services 26
4.3.3 Service APIs: Client API 27
4.3.4 Software Packaging 29
4.3.5 Installation and configuration 30

5. SCIENTIFIC FOUNDATIONS 32

6. CONCLUDING REMARKS 35

ASSETS Metadata-Based Indexing And Ranking Page 1 D2.2.3 V1.3

Executive Summary

This document illustrates the software components resulting from the activities conducted

within the tasks "T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking" and

"T2.2.3 Text Indexing and Retrieval". For each delivered service, it includes:

• the software requirements overview;

• the technical documentation (UML diagrams, services description and API

documentation, software packaging and installation instruction);

• the user manual

This document is intending to support the integration in Europeana and maintenance

related activities. This document describes the backed part of the services, the integration in

the Assets Portal is documented in the D2.5.4 Improved User Interface.

ASSETS Metadata-Based Indexing And Ranking Page 2 D2.2.3 V1.3

1. This Introduction

Task "T2.2.1 Post Querying Processing" proposes a new query recommendation algorithm

specifically tailored for the ASSETS project and Europeana users.

Task "T2.2.2 Metadata based ranking" deals with techniques for effective ranking of

metadata objects in the for the Europeana search engine.

The Europeana query log analysis that we conducted with the aid of the tools developed

within task "T2.2.3 Text Indexing and Retrieval", and the literature on multi-field document

retrieval, suggests that the ranking function currently adopted by Europeana can be

improved.

This deliverable provides the technical documentation needed to install, configure and use

the software that has been produced during the above mentioned three tasks.

The document is divided into three main parts that describe in detail the three text

processing services:

• The Query Suggestion Service (T.2.2.1): provides useful suggestions for related

search queries given the last query used by a user.

• The Metadata Based Ranking Service (T.2.2.2) which provides a new ranking

function (BM25F), together with a “learning to rank” method to be used for learning

the free parameters of the BM25F ranking function.

• The Query Log indexing Service (T.2.2.3) which performs the cleaning, analysis and

indexing of the Europeana query logs. It provides statistics over the past users’

queries.

This document introduces technical aspects of the services: the software requirements, the

UML diagrams, the API documentation, the software installation and configuration, and the

user manuals.

ASSETS Metadata-Based Indexing And Ranking Page 3 D2.2.3 V1.3

2. T2.2.1 Post Query Processing

2.1 Introduction

User’s queries are often ambiguous or they do not suffice to describe the user’s information

need. For this purpose specific post-query processing techniques are important to provide

the user with additional or enhanced information: query suggestion is one of such kind.

Providing users of Web Search Engines (WSEs) systems with suggestions is a common

practice aimed at “driving” users towards the “piece of information” that they may need.

Suggestions are normally provided as queries that are, to some extent, related to those

recently submitted by the user. The generation process of such queries, basically, exploits

the expertise of “skilled” users who should help inexperienced ones. The mined-knowledge

for making this possible is contained in WSEs’ logs which store all the previous interactions

between the users and the system. The more good queries (i.e. queries that enable users to

satisfy their information need) were used in the past, the more precise and effective the

related suggestions provided by the query recommendation technique will be for future

searches. On the other hand, generating effective suggestions for queries that are rare or

have never been submitted in the past is an open issue poorly addressed by state-of-the-art

query suggestion techniques.

We formalize the problem of recommending good queries as a problem of generating

"search shortcuts", where we call shortcuts those queries that can help the user to quickly

access the content he/she is looking for.

The Search Shortcut Problem (SSP) is formally defined as a problem related to the

recommendation of queries in search engines and the potential reductions in the users

session length. This problem formulation allows a precise goal for query suggestion to be

devised: recommend queries that allowed “similar” users, i.e., users which in the past

followed a similar search process, to successfully find in advance the information they were

looking for. The problem has a nice parallel in computer systems: pre-fetching. Similarly to

pre-fetching, search shortcuts anticipate future requests (made by the users) to the search

engine with suggestion of queries that a user would have likely issued at the end of his/her

session.

2.2 Software Requirements Overview

2.2.1 Requirements

Usability: The system will nicely integrate a set of related queries within the Europeana

portal. Users are already used to query suggestion mechanism.

Reliability: The service must be able to provide meaningful related links for any given query

submitted by a user to the search engine.

Performance: The query suggestion system should be faster than the query answering

system, i.e. it should be able to provide a result within a few hundred milliseconds.

Look & Feel: The displayed results list should be easily recognizable but not intrusive.

ASSETS Metadata-Based Indexing And Ranking Page 4 D2.2.3 V1.3

Layout and Navigation Requirements: The suggested links should appear near the search

box and/or at the bottom of the search result page.

System Constraints: The system will require the SOLR search engine.

Licensing Requirements: The post query processing service is written in Java and requires

the Java Runtime Environment. There are no requirements to acquire a license for

commercial third party software. Third party components are several open-source Java

libraries.

System Documentation: (a) Code will be commented in a professional manner so that API

documentation can be automatically generated, and (b) service documentation will also be

provided, detailing the installation, configuration, and use of the service.

2.2.2 Use Cases

Actors

• User: the user submits his/her own queries to the search system, that transparently

forward them to the query suggestion tool

Stakeholders

• Users: need advanced tools for improving their query browsing and interaction

experience with Europeana.

• Europeana: creates user friendly access to European heritage.

Preconditions

• Europeana query logs are available to the Assets portal administrator.

ASSETS Metadata-Based Indexing And Ranking Page 5 D2.2.3 V1.3

Basic flow of events

Figure 1 Post Query Processing use case

1. The use case begins when user visits the Europeana Home Page;

2. At step one he/she submits a query;

3. At step two he/she receives the results pages;

4. If there is a good result, this is clicked and the use case ends;

5. Otherwise the user may find an interesting query suggestion, which is used as a new

query to the system;

6. Or the user re-writes a new query until an interesting result is returned.

Post- conditions

• The system must log the queries submitted and the clicks issued during the

interaction with the user.

Special requirements

• User sessions must be available to train the underlying model;

• The query suggestions must be integrated within the ASSETS/EUROPEANA web

portal.

Content requirements for Europeana portal:

• Europeana must log the activity of the users visiting the portal. The activity should

be split into users' sessions.

ASSETS Metadata-Based Indexing And Ranking Page 6 D2.2.3 V1.3

2.3 Technical Documentation

2.3.1 UML Diagrams

Figure 2 Suggestions Class Diagram

Figure 2 shows the class diagram of the domain object “Suggestions” which is used to store

the set of queries suggested to the user. The object is used for encapsulating a particular

query (e.g., Pablo Picasso) and the suggestions for the query ranked for relevance (e.g.,

Pablo Picasso life, Guernica, Cubism …).

The interface exposes only the method GetSuggestion() which returns the list of the

suggestions to be displayed to the user.

Figure 3 Query Suggestion Service Class Diagram

Figure 3 shows the class diagram of the query suggestion service implementation, which

exploits an index of virtual documents to provide recommendations in response to a given

ASSETS Metadata-Based Indexing And Ranking Page 7 D2.2.3 V1.3

query. For each received query, the Query Suggestion Service produces a Suggestions Object

containing the ranked list of suggestions.

Figure 4 Query Suggestion Client Class Diagram

Finally, Figure 4 illustrates the class diagram of the query suggestion client and its

implementation. The client defines how the other components of the ASSETS platform

would interact with the query recommendation component. Its first task is to receive the

queries from the other components; then it submits the queries to the query suggestion

service and finally returns the suggestions to the applicants. If needed, this service could be

exposed externally as a specific API-call available to third parties.

2.3.2 Service APIs: REST services

The suggestions for a query are also provided as a REST service.

Figure 5 IR-Text Post Query Processing REST API

The service takes a string containing the query performed by the user (with parameter name

query) as input and returns a list of possible suggestions for the query, encoded in XML or in

JSON.

The path of the service is /assets/ir-text/QuerySuggestionService/rest/suggestions

ASSETS Metadata-Based Indexing And Ranking Page 8 D2.2.3 V1.3

Table 1 shows the main service information needed to call it:

Method Response

type

Name Parameters Function

GET XML/JSON suggestions @query, the query performed by

the user

Returns related

queries for the

query performed

by the user

Table 1 Post Query Processing REST API

2.3.3 Service APIs: Client API

This API provides a method to invoke the suggestion service.

2.3.4 Software Packaging

The query suggestion module is 100% java code and it is developed using Maven.

The backend and the client depend on

• solr-solrj 1.4.0 - to interface with the solr server where the suggestions are stored

• common-data-model 1.0

• gson 1.7.1 – Google library for parsing json

The configuration files are:

• assets-ir-text.properties (/ir-text/src/main/resources/assets-ir-text.properties)

• assets-ir-text-client.properties (/ir-text-client/src/main/resources/assets-ir-text-

client.properties)

2.3.5 Installation and configuration

Since the service uses Solr to store its model, the developer will have to add a new core in

the solr configurations for soring and indexing the suggestions1.

Then the url of the solr suggestion server has to be set in the property file (assets-ir-

text.properties) e.g.:

1 For adding a new core in solr configurations, please refer to http://wiki.apache.org/solr/CoreAdmin

API QuerySuggestion

Responsibility Provides related queries given a query performed by the user

Provided

methods

Suggestions getSuggestions (String query)

Takes a user query (e.g., "Pablo Picasso"), and it returns the suggestions

• (e.g., "Pablo Picasso blu's period","cubism"...)

@param query : the user query

@returns the domain object Suggestions, containing the list of all possible

related queries (the list is empty if there are not related queries).

ASSETS Metadata-Based Indexing And Ranking Page 9 D2.2.3 V1.3

the solr suggestion server

solr.server.suggestion = http://localhost:8989/solr /suggestion

In order to enable the suggestions the admin will have run the log analysis and to compute

the query suggestions:

1. Compute the query suggestions with the command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar

 eu.europeana.assets.service.ir.text.cli.GetSuggest ionsFromJsonLogsCLI

–input querylogFolder

 For each query log file in the query log folder, this command will generate a json file

in the sessions folder. The folder name is set in the property file (assets-ir-text.properties)

with the name session.folder, e.g.,

#The folder containing the parsed sessions in the q uery logs

session.folder = /tmp/europeana_sessions

2. Finally each json file containing the parsed session will be indexed on the Solr Server

using the command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar

 eu.europeana.assets.service.ir.text.cli.IndexSugge stionsCLI

–input sessionFile

where:

• sessionFile is a file in the $(session.folder) folder.

ASSETS Metadata-Based Indexing And Ranking Page 10 D2.2.3 V1.3

3. T 2.2.2 Metadata Based Ranking

3.1 Introduction

Task T2.2.2 deals with techniques for effective ranking of results in the context of Europeana

search. The Europeana query log analysis that we conducted with the aid of the tools

developed within task "T2.2.3 Text Indexing and Retrieval", and the literature on multi-field

document retrieval, suggests that the ranking function currently adopted by Europeana can

be improved.

In the following paragraphs, we provide a specification for an advanced metadata based

ranking. In particular, we will describe our implementation of the BM25F ranking function,

and the machine-learning module for best tuning its parameters. The learning step exploits

the output of query log processing tools, which is described in Section 4.

3.2 Software Requirements Overview

3.2.1 Requirements

Reliability: A novel ranking function will not affect the reliability of the search system.

Performance: The ranking function should not harm the performance of the underlying

search system.

User Interface: The service will change the list of results returned to the user, but not their

presentation.

Look & Feel: No user interface to be provided.

Layout and Navigation Requirements: No user interface to be provided.

Interfaces to External Systems or Devices: The system will provide a set of results for any

given query submitted by the user.

Software Interfaces: No external software will be used. The service will be embedded as an

additional ranking function (i.e., a Solr plugin) within the query processing component.

Access to full documents, and to historical data about the user interaction with the system is

needed to fine-tune the ranking function. This analysis is done off-line with no interaction

with external components.

System Constraints: The system will require the SOLR search engine.

Licensing Requirements: The metadata based ranking service is written in Java and requires

ASSETS Metadata-Based Indexing And Ranking Page 11 D2.2.3 V1.3

the Java Runtime Environment. There are no requirements to acquire any license for

commercial third party software. Third party components are open-source Java libraries.

System Documentation: (a) Code will be commented in a professional manner so that API

documentation can be automatically generated, and (b) service documentation will also be

provided, detailing the installation, configuration, and use of the service.

3.2.2 Use Cases

These use cases describe the activities that are performed during the searching. The main

goal of the service is to satisfy a user information need.

Actors

• Europeana foundation: www.europeana.eu.

• Assets development team: Improve metadata based ranking.

• Europeana Users: Users of the Europeana portal.

Stakeholders

• End-user: who submits a query and navigates through a long result list to find what

she was looking for.

• Europeana: wants to offer powerful metadata search.

ASSETS Metadata-Based Indexing And Ranking Page 12 D2.2.3 V1.3

Basic Flow of Events

Figure 6 Metadata Based Ranking Use Case

1. Start : The use case begins when the users access the site.

2. Search : A user submits a query.

3. Display Query Results Page : Results are displayed to the users in a web page.

Requirements for Content Provision

• Query logs are available in order to improve results quality.

• Average length of each metadata fields is available.

Content requirements for Europeana portal

• Query logs are available in order to improve results quality.

3.3 Technical Documentation

3.3.1 UML Diagrams

The service is used to perform two main operations: search and learning to rank.

ASSETS Metadata-Based Indexing And Ranking Page 13 D2.2.3 V1.3

Figure 7 Ranking Parameters Domain Class Diagram

 Figure 7 shows the domain objects for the service:

• QueryParams models the user query: it contains the text of the query and the filters

possibly added by the user to refine the query (for example TYPE:IMAGE filters only

documents containing images).

• RankingParameters models the set of free parameters for the ranking function. The

method getParameters() returns a dictionary where, for each parameter, there is

the value optimizing the quality of the ranking function, learned from the query

logs.

ASSETS Metadata-Based Indexing And Ranking Page 14 D2.2.3 V1.3

Figure 8 BM25F Scoring function class diagram

Figure 8 shows the class diagram of the BM25F scoring function implementation. The

service allows processing a query using the BM25F scoring function (method search) and

returns a list of AssetsFullDoc objects. Furthermore, the service exposes a method to

retrieve a good tuning for the parameters in the scoring function (that the developer has to

set in the SOLR configuration file).

Figure 9 BM25F Scoring function client class diagram

Figure 9 shows the class diagram of the BM25F client and its implementation. The client

defines how the other components of the ASSETS platform would interact with the BM25F

component. Its first task is to receive from the other components the queries (encapsulated

in a QueryParams object that may contain also filters and other parameters); then it submits

the queries to the SOLR engine and finally it returns the results to the applicants (function

search()). Furthermore, the client also exposes a method to require the BM25F’s parameters

learning process (method learnParameters()). If a user invokes this method, he/she will

ASSETS Metadata-Based Indexing And Ranking Page 15 D2.2.3 V1.3

obtain a list of parameters with their respective tuned values (encapsulated in a

RankingParameters object).

3.3.2 BM25F Solr Plugin

For performance reasons, we decided to implement the BM25F ranking function as a Solr

plugin.

The ranking function needs to access several values that can be found only in the document

index, that are:

• The field term frequency, i.e., how many times a term occurs in a field of a

document (e.g., “description”);

• The inverse document frequency, i.e., how many documents contain a specified

term;

• The average length of a field, i.e., the average length (i.e. number of terms) of a field

computed on the whole collection.

We integrated the ranking function as a Solr plugin, without modifying the core code. This

will allow updating Solr to new versions without applying any patch to the Solr core. The

admin can enable the plugin from the Solr’s configuration file by simply adding the following

few lines to the file solrconfig.xml:

<queryParser name="bm25f"
class="bm25f.parser.BM25FQParserPlugin">
<float name="k1">1.0</float>
<str name="mainField">text</str>
<lst name="averageLengthFields">
<float name="text">500</float>
<float name="title">20</float>
<float name="description">300</float>
<float name="YEAR">4</float>
<float name="date">10</float>
</lst>
<lst name="fieldsBoost">
<float name="text">1.0</float>
<float name="title">5.0</float>
<float name="description">3.0</float>
<float name="YEAR">1.0</float>
<float name="date">1.0</float>
</lst>
<lst name="fieldsB">
<float name="text">0.75</float>
<float name="title">0.75</float>
<float name="description">0.75</float>
<float name="YEAR">0.75</float>
<float name="date">0.75</float>
</lst>

</queryParser>

Figure 10 How to configure the Solr BM25F plugin

The configuration file allows the admin to change the parameters of the ranking function by

using his domain knowledge or by calling the learnParameters() method. The customizable

parameters are:

• K1, the saturation factor (default 1.0)

• fieldBoost, containing the boosts to apply on the various fields;

• fieldB, containing the boosts to apply to the length of a field;

• averageLengths, the average lengths of the fields, because solr does not have this

data. We also provide a method to estimate the length of the parameters.

ASSETS Metadata-Based Indexing And Ranking Page 16 D2.2.3 V1.3

Once the plugin has been plugged in, the BM25F ranking function can be called by simply

adding the parameter defType=bm25f to the GET HTTP request, e.g. :

http://mysolrmachine:8983/solr/select/? defType=bm25f&q=leonardo%20da%20vinci

3.3.3 Service APIs: REST services

Figure 11 Metadata Based Ranking REST API

The service offers two REST methods:

• search: receives a string containing the query performed by the user (with

parameter name query) as input and returns the list of top documents matching

the query, ranked using the bm25f ranking plugin. Results are encoded in XML or in

JSON.

The path of the method is

/assets/ir-text/MetadataBasedRanking/rest/search

• learning: learns the best combination of parameters for the bm25f ranking function,

returns the list of parameters with their values, encoded in XML or in JSON.

The path of the method is

/assets/ir-text/MetadataBasedRanking/rest/learning

ASSETS Metadata-Based Indexing And Ranking Page 17 D2.2.3 V1.3

Method Response

type

Name Parameters Function

GET JSON/XML search @query, the query performed by

the user
Returns the list

of top-12

documents

matching the

query, ranked

using the bm25f

ranking plugin.

GET JSON/XML learn - Learns the best

combination of

parameters for

the bm25f

ranking

function.

Returns the list

of parameters

with their

values.

Table 2 Metadata Based Ranking REST API

3.3.4 Service APIs: Client API

This API provides methods to interface with the metadata based ranking service.

API MetadataBasedRanking

Responsibility provides techniques for improving ranking of results returned by the

Europeana search engine.

Provided

methods

List<AssetsFullDoc> search (QueryParams query)

Takes a the user query (e.g., "Pablo Picasso"), returns the top documents

matching the query, ranked using the bm25f ranking plugin.

@param query : the user query

@returns the list of top documents matching the query, ranked using the

bm25f ranking plugin

RankingParameters learnParamenters()

learns the best combination of parameters for the bm25f ranking function,

returns the list of parameters with their values, encoded in XML or in JSON.

@returns returns the list of parameters with their values, encoded in XML

or in JSON

ASSETS Metadata-Based Indexing And Ranking Page 18 D2.2.3 V1.3

3.3.5 Software Packaging

The metadata based ranking module is 100% java code and it has been developed by using

Maven.

The backend and the client depend on:

• solr-solrj 1.4.0 - to interface with the solr server where the suggestions are stored

• solr-core 1.4.0 / lucene 2.9.4 in order to extend solr with the bm25f ranking plugin.

• common-data-model 1.0

• gson 1.7.1 – Google library for parsing json

The configuration files are:

• assets-ir-text.properties (/ir-text/src/main/resources/assets-ir-text.properties)

• assets-ir-text-client.properties (/ir-text-client/src/main/resources/assets-ir-text-

client.properties)

3.3.6 Installation and configuration

Installing bm25f ranking plugin

In order to install the bm25f plugin, the admin has to create the jar of the service using the

command:

mvn assembly:assembly -DskipTests

This command will produce a file called “ir-text-0.0.1-SNAPSHOT-jar-with-dependencies.jar”

in the target folder of the ir-text project.

Then copy the jar in the lib folder of solr installation:

 cp target/ir-text-0.0.1-SNAPSHOT-jar-with-dependen cies.jar $SOLRHOME/metadata/lib

Import the bm25f query parser from solrconfig.xml solr config file, adding in the xml:

<queryParser name="bm25f" class= "
eu.europeana.assets.service.ir.text.bm25f.parser.BM 25FQParserPlugin ">

The plugin is then available and can be used as shown in subsection 3.3.2.

The service also provides a command line to compute efficiently the average length of each

fields in the index schema (needed by the bm25f ranking function).

In order to compute such values the user may use the command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar
eu.europeana.assets.service.ir.text.bm25f.util.Comp uteAverageFieldLength indexPath

ASSETS Metadata-Based Indexing And Ranking Page 19 D2.2.3 V1.3

where indexPath is the path of the Solr index.

ASSETS Metadata-Based Indexing And Ranking Page 20 D2.2.3 V1.3

Learning to rank

The assessments needed for the learning to rank method, may be generated using the

following command

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar

 eu.europeana.assets.service.ir.text.cli.GenerateLe arningToRankAssessmentsCLI

 –input sessionDir –from startDate –n assessmentsNu mber

where:

• sessionDir is the directory containing the parsed sessions (in json format);

• startDate is the starting date of the learning interval (format is dd/MM/yyyy);

• assessmentsNumber is the number of assessments to generate.

The assessment contains the most popular queries available in the logs after the given date.

Assessments are generated in the folder set in the property file assets-ir-text.properties

with the property name assessments_folder:

#the folder where the evaluation dataset resides

assessments_folder = ./services/ir-text/data/evalua tion_dataset

The learning of BM25F parameters can be also performed by using the following command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar

 eu.europeana.assets.service.ir.text.cli.LearningTo RankCLI –input assessmentsFolder

where:

• assessments_folder is the folder containing the assessments

When the LearningToRankCLI execution is finished (i.e. may take several hours depending

on the size of the query log), it will print the values for the parameters and the admin will

have to update this values in the solrconfig.xml file (see Section 3.3.2).

ASSETS Metadata-Based Indexing And Ranking Page 21 D2.2.3 V1.3

4. T 2.2.3 Text Indexing And Retrieval

4.1 Introduction

The goal of task T2.2.3 is to devise a set of query log processing tools needed by other

ASSETS services, paying attention to those that will be used to extract user behavioral

patterns.

These patterns will be useful for improving the ASSETS ranking function and, at the same

time, will provide the clean information to be used by the query recommendation service.

The task includes non-trivial activities such as:

• The Query log cleaning: consisting in parsing a raw record from the server and

encoding it in a well-structured form.

• The Analysis consisting in removing “spam” records from bots, and grouping

records performed by the same user in sessions.

• Persistance: storing the sessions and the records on a database (MongoDB).

The module also provides an API and a REST service which can be used to retrieve a singular

record/session and to obtain useful statistics about the logs over a range of days or months.

4.2 Software Requirements Overview

4.2.1 Requirements

Usability: No interaction with the end user.

Reliability: It should be able to answer retrieval query about statistics over the query logs at

any time.

Performance: It should be able to answer queries within a few milliseconds.

Layout and Navigation Requirements: None

Interfaces to External Systems or Devices: No external software will be used. The text files

containing the query logs are used as input for the service.

Software Interfaces: This software component will provide query log indexing and retrieval

to other software components of the system. In particular, it will support every tool

developed within the post query processing activity. Whenever possible, RESTful HTTP

interfaces will be used.

System Constraints: The system will require the MongoDB nosql database.

ASSETS Metadata-Based Indexing And Ranking Page 22 D2.2.3 V1.3

Licensing Requirements: Software will be licensed in compliance with EUPL.

Legal, Copyright, and Other Notices: None.

Applicable Standards: None.

System Documentation: Code will be commented in a professional manner so that API

documentation can be automatically generated, and service documentation will also be

provided, detailing the installation, configuration, and use of the service.

4.2.2 Use Cases

Actors

• Europeana foundation: www.europeana.eu.

• Assets development team: Index the query logs.

• Europeana Portal administrators: Browse the records and the statistics.

Stakeholders

• Europeana: wants to know better the users’ needs.

This use case describes the processing steps performed by the Text Indexing and Retrieval

service and its interaction with the Europeana Core service.

Figure 12 Query Log Statistics Retrieval Use Case

1. Start : The use case begins when the user accesses statistics page; then the user can:

 2. Get a specific statistic on the query logs,

ASSETS Metadata-Based Indexing And Ranking Page 23 D2.2.3 V1.3

 3. Retrieve a Session or a Record : e.g., view a particular session performed by a user.

.4. Display the results.

Then the user may decide to browse other statistics or to end the browsing session.

Requirements for Content Provision

• Query logs available.

Content requirements for Europeana portal

• Query logs are available in order to improve results quality.

4.3 Technical Documentation

4.3.1 UML Diagrams

Figure 13 shows the class diagram modeling query log data and session information.

QueryLogRecord describes the java object representation for a record in the query log. It

represents a user interaction with the portal (submitting a query, clicking on a result item,

etc.). The Session object represents a user query session. Queries by the same user are split

in different sessions based on the time interval between consecutive queries.

ASSETS Metadata-Based Indexing And Ranking Page 24 D2.2.3 V1.3

Figure 13 QueryLogRecImpl Domain Object Class Diagram

ASSETS Metadata-Based Indexing And Ranking Page 25 D2.2.3 V1.3

Figure 14 QueryLogIndexing Service Class Diagram

Finally, Figure 14 displays the class diagram of the query log indexing service. The service

accomplishes the task of retrieving the query log, splitting the log into user sessions,

computing relevant statistics and other information to be used by the query suggestion

service and by the metadata based ranking. More in detail:

Retrieving Statistics

• getUserSessions, the sessions issued by a particular user;

• getNumberOfDistinctUsers, the distinct number of users;

• getNumberOfSessions, the distinct number of sessions;

• getNumberOfQueries, the number of queries;

• getNumberOfDistintQueries, the number of distinct queries;

• getAverageQueryLength, the average length of a query measured by the number of

terms;

• getTopQueriesWithFrequencies, the most frequent queries;

• getNumberOfSessionsForDay, the frequency distribution of the sessions over the

days in a month;

• getNumberOfSessionsForHour, the frequency distribution of the sessions over the

hours in a day.

Each method receives a start date and an end date as inputs and computes the statistics

over the queries in the selected time range. Users may specify a time range in months (e.g.

from February 2011 to April 2011) or a time range in days (e.g., last week’s queries).

ASSETS Metadata-Based Indexing And Ranking Page 26 D2.2.3 V1.3

Browsing Sessions and Records

• getSession , given the session id, it retrieves a particular session, and the records

within it;

Notice that the service executes implicitly the removal of noise from the query log, e.g., bots

interactions.

4.3.2 Service APIs: REST services

Figure 15 Text Indexing And Retrieval REST API

The service offers several REST methods. In Table 3 the main information needed to call

the methods are shown.

Method Response

type

Name Parameters Function

GET JSON/XML getUserSessio

ns

@userId, the user id for which to

retrieve the sessions
Returns the

sessions issues

by a particular

user

GET JSON/XML getNumberOf

DistinctUsers

@start, @end, the period over

which to calculate the statistic
Returns the

distinct

number of

users

GET JSON/XML getNumberOfS @start, @end, the period over Returns the

ASSETS Metadata-Based Indexing And Ranking Page 27 D2.2.3 V1.3

ession which to calculate the statistic number of

sessions

GET JSON/XML getNumberOf

Queries

@start, @end, the period over

which to calculate the statistic
Returns the

number of

queries

GET JSON/XML getNumberOf

DistinctQuerie

s

@start, @end, the period over

which to calculate the statistic
Returns the

number of

distinct queries

GET JSON/XML getAverageQu

eryLength

@start, @end, the period over

which to calculate the statistic
Returns the

average length

of a query in

number of

terms

GET JSON/XML getTopQueries

WithFrequenci

es

@start, @end, the period over

which to calculate the statistic
Returns the

most frequent

queries

GET JSON/XML getNumberOfS

essionsForDay

@start, @end, the period over

which to calculate the statistic
Returns the

frequency

distribution of

the sessions

over the days

of a month

GET JSON/XML getNumberOfS

essionsForHou

r

@start, @end, the period over

which to calculate the statistic
Returns the

frequency

distribution of

the sessions

over the hours

of a day

GET JSON/XML getSession @sessionId the id of the session to

show
given the id, it

retrieves a

particular

session, and

the records

within it;

Table 3 Post Query Processing REST API

4.3.3 Service APIs: Client API

The client API provides methods to interface with the Query Log Indexing service,

API Query Log Indexing Service

Responsibility Returns statistics over the query log

ASSETS Metadata-Based Indexing And Ranking Page 28 D2.2.3 V1.3

Provided

methods

List<Session> getUserSessions (String userId)

Returns the sessions issues by a particular user;

@param useriD: the user id for which to retrieve the sessions;

@returns the sessions issues by a particular user

int getNumberOfDistinctUsers(Date start, Date end)

returns the distinct number of users

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns the distinct number of users

int getNumberOfSessions (Date start, Date end)

returns the distinct number of sessions

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns the distinct number of sessions

int getNumberOfQueries (Date start, Date end)

Returns the number of queries

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns the number of queries

int getNumberOfDistintQueries (Date start, Date end)

Returns the distinct number of queries

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns the distinct number of queries

float getNumberOfDistintQueries (Date start, Date end)

Returns the average length of a query in number of terms;

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns the average length of a query in number of terms;

ASSETS Metadata-Based Indexing And Ranking Page 29 D2.2.3 V1.3

4.3.4 Software Packaging

The metadata based ranking module is 100% java code and it has been developed using

Maven for build automation.

Map<String,Integer> getTopQueriesWithFrequencies(Date start,

Date end)

Returns the most frequent queries;

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns A map containing the most frequent queries with their

frequencies.

Map<Integer, Integer> getNumberOfSessionsForDay (Date start,

Date end)

Returns the frequency distribution of the sessions over the days of a

month.

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns A map containing for each day of a month, the frequency of

the queries performed during that day

Map<Integer, Integer> getNumberOfSessionsForHour (Date start,

Date end)

Returns The frequency distribution of the sessions over the hours of a day

@param start, the start date of the period over which to calculate the

statistic

@param end, the end date of the period over which to calculate the

statistic

@returns A map containing for each hour of a day, the frequency of the

queries performed during that hour

Session getSession (String sessionId)

Given the id, it retrieves a particular session, and the records within it;

@param sessionId the id of the session to retrive

@returns the session id for which to retrieve the session;

ASSETS Metadata-Based Indexing And Ranking Page 30 D2.2.3 V1.3

The backend and the client depend on

• common-data-model 1.0

• common-api-server 1.0

• gson 1.7.1 – Google library for parsing json

4.3.5 Installation and configuration

The Europeana query logs come as raw apache logs, e.g.,

66.249.66.144 - - [12/Jan/2011:04:02:02 +0100] "GET /portal/europeana-sitemap-
hashed.xml?prefix=6090&images=false HTTP/1.1" 404 3 246 "-" "Mozilla/5.0 (compatible;
Googlebot/2.1; +http://www.google.com/bot.html)"

66.249.66.167 - - [12/Jan/2011:04:02:02 +0100] "GET /portal/europeana-sitemap-
hashed.xml?prefix=0C4B&images=false HTTP/1.1" 404 3 246 "-" "Mozilla/5.0 (compatible;
Googlebot/2.1; +http://www.google.com/bot.html)"

1.1.1.1- - [12/Jan/2011:04:06:05 +0100] "GET
/portal/record/03903/255A899BE7E9146D28D88C3D57A8E2 65B0ADD4E3.html?query=leonardo+da+v
inci&start=954&startPage=937&pageId=brd&view=text_o nly HTTP/1.1" 200 1542 "
Mozilla/5.0 (Windows; U; Windows NT 5.1; ja; rv:1.9 .2.8) Gecko/20100722 Firefox/3.6.8
(.NET CLR 3.5.30729"

1.1.1.1- - [12/Jan/2011:04:06:15 +0100] "GET /porta l/brief-
doc.html?query=leonardo+da+vinci+florence&start=954 &startPage=937&pageId=brd&view=text
_only HTTP/1.1" 200 1542 " Mozilla/5.0 (Windows; U; Windows NT 5.1; ja; rv:1.9.2.8)
Gecko/20100722 Firefox/3.6.8 (.NET CLR 3.5.30729"

The Query Log Indexing service provides a command to put the logs in a well-structured

format:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar
eu.europeana.assets.service.ir.text.cli.SessionizeQ ueryLogFileCLI –input rawQueryLog -
output parsedQueryLog.json

SessionizeQueryLogFileCLI accepts a raw apache log from Europeana (rawQueryLog) as

input, filters the bots and produces a json file containing the log records “sessionized” on

the users, for example for the logs previously shown , the file will contain:

{"start" : "Jan 12, 2011 4:06:05 AM"

 "end" : "Jan 12, 2011 4:06:15 AM ",

 "country":"Italy",

 "successful":false,

 "ip":"1.1.1.1",

 "userAgent": "Mozilla/5.0 (Windows; U; Windows NT 5.1; ja; rv:1.9.2.8)
Gecko/20100722 Firefox/3.6.8 (.NET CLR 3.5.30729)" ,

 "queries":["leonardo da vinci","leonardo da vinc i florence"],

 "session":[

 {"query":"leonardo+da+vinci",

 "cleanQuery":"leonardo da vin ci",

 "date":"Jan 12, 2011 4:06:05 AM",

 "hasQuery":false,"hasClick":true}]},

 {"query":"leonardo+da+vinci-florence",

 "cleanQuery":"leonardo da vin ci",

 "date":"Jan 12, 2011 4:06:15 AM",

 "hasQuery":true,"hasClick":false}]}

]}

The json query logs files are then indexed on mongoDB using the command:

ASSETS Metadata-Based Indexing And Ranking Page 31 D2.2.3 V1.3

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar
eu.europeana.assets.service.ir.text.cli.StoreJsonLo gsOnMongoDbCLI –input queryLog.json

Every time the admin indexes new logs, he will have to optimize the mongoDB index by

using the following mongoDB commands:

db.QueryLogRecordImpl.ensureIndex({ Date : 1, IsCl ick : 1 });

db.SessionImpl.ensureIndex({ Date : 1, IsSuccessfu l:1 });

In order to generate the advanced statistics over the query log, the admin will have to run

the following command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar
eu.europeana.assets.service.ir.text.cli.GetStatsFro mMongoDbCLI –from MM/YYYY -to
MM/YYYY -folder statsOutputFolder

where:

• from, to are respectively the starting date (format MM/YYYY) and the ending date

of the time range for which the statistics have to be generated,

• statsOutputFolder is the folder where the produced statistics will be stored (one

json file for each month).

Finally the statistics will be stored in the MongoDB database using the command:

java –cp ir-text-0.0.1-SNAPSHOT-jar-with-dependenci es.jar -input statsFolder/statsFile

Where:

• input is a file of statistics extracted by using the GetStatsFromMongoDbCLI, or a folder

containing files of statistics.

ASSETS Metadata-Based Indexing And Ranking Page 32 D2.2.3 V1.3

5. Scientific Foundations

Adomavicius, G., Tuzhilin, A. Toward the next generation of recommender systems: A survey

of the state-of-the-art and possible extensions. IEEE TKDE 17 (6), 734–749. 2005.

Boldi,P.,Bonchi,F.,Castillo,C.,Donato,D.,Gionis,A.,Vigna,S. The query-flow graph: model and

applications. In: Proc. CIKM’08. ACM 2008.

Boldi, P., Bonchi, F., Castill2o0, C., Donato, D., Vigna, S.. Query suggestions using query-flow

graphs. In: Proc. WSCD’09. ACM. 2009.

Boldi, P., Bonchi, F., Castil1lo0, C., Vigna, S. From ’dango’ to ’japanese cakes’: Query

reformulation models and patterns. In: Proc. WI’09. IEEE. 2009.

Baraglia, R., Cacheda, F., Carneiro, V., Fernandez, D., Formoso, V., Perego, R., Silvestri, F.

Search shortcuts: a new approach to the recommendation of queries. In: Proc. RecSys’09.

ACM, New York, NY, USA. 2009.

Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F. The impact

of caching on search engines. In: Proc. SIGIR’07. pp. 183–190. ACM, New York, NY, USA.

2007.

Baeza-Yates, R., Tiberi, A. Extracting semantic relations from query logs. In: Proc. KDD’07.

ACM. 2007.

Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.. Hourly analysis of a

very large topically categorized web query log. In: Proc. SIGIR’04. ACM Press. 2004.

Broccolo, D., Marcon, L., Nardini, F.M., Perego, R., Silvestri, F.: An efficient algorithm to

generate search shortcuts. Tech. Rep. 2010-TR-017, CNR ISTI Pisa. 2010.

C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth cost functions. In

Advances in Neural Information Processing Systems (NIPS), 2006.

D. Ceccarelli, S. Gordea, C. Lucchese, F. M. Nardini and G. Tolomei. Improving Europeana

Search Experience Using Query Logs . In Proceedings of «TPDL ’11: International Conference

on Theory and Practice of Digital Libraries», Berlin, Germany, September 2011.

D. Ceccarelli, S. Gordea, C. Lucchese, F.M. Nardini, R. Perego, G. Tolomei. Discovering

Europeana users’ search behavior. In « ERCIM News», No. 86, 2011.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg

Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international

ASSETS Metadata-Based Indexing And Ranking Page 33 D2.2.3 V1.3

conference on Machine learning (ICML '05), 2005.

Pinar Donmez, Krysta M. Svore, and Christopher J.C. Burges. On the local optimality of

LambdaRank. In Proceedings of the 32nd international ACM SIGIR conference on Research

and development in information retrieval (SIGIR '09), 2009.

R. Herbrich, T. Graepel, and K. Obermayer. Large Margin Rank Boundaries for Ordinal

Regression. Advances in Large Margin Classifiers, pages 115-132, 2000.

Jarvelin, A., Jarvelin, A., Jarvelin, K. s-grams: Defining generalized n-grams for information

retrieval. IPM 43 (4), 1005– 1019. 2007.

Jones, R., Klinkner, K.L.. Beyond the session timeout: automatic hierarchical seg- mentation

of search topics in query logs. In: CIKM ’08. pp. 699–708. ACM 2008.

Lucchese, C., Orlando, S., Perego, R., Silvestri, F., Tolomei, G.: Identifying task- based

sessions in search engine query logs. In: Proc. WSDM’11. pp. 277–286. ACM, New York, NY,

USA 2011.

Ma, H., Lyu, M. R., King, I. Diversifying query suggestion results. In: Proc. AAAI’10. AAAI.

2010.

José Pérez-Agüera, Javier Arroyo, Jane Greenberg, Joaquin Iglesias, Victor Fresno. Using

BM25F for semantic search. SEMSEARCH '10: Proceedings of the 3rd International Semantic

Search Workshop (2010)

S. Robertson and S. Walker. Some simple effective approximations to the 2-Poisson model

for probabilistic weighted retrieval. In ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR), pages 345–354, 1994.

Robertson, S., Zaragoza, H. The probabilistic relevance framework: Bm25 and beyond.

Found. Trends Inf. Retr. 3 (4), 333–389. 2009.

S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple weighted

fields. In ACM Conference on Information Knowledge Management (CIKM), pages 42–49,

2004.

Silvestri, F. Mining query logs: Turning search usage data into knowledge. Foundations and

Trends in Information Retrieval 1 (1-2), 1–174. 2010.

Krysta M. Svore and Christopher J.C. Burges. 2009. A machine learning approach for

improved BM25 retrieval. In Proceeding of the 18th ACM conference on Information and

knowledge management (CIKM '09).

ASSETS Metadata-Based Indexing And Ranking Page 34 D2.2.3 V1.3

Silverstein, C., Marais, H., Henzinger, M., Moricz, M. Analysis of a very large web search

engine query log. SIGIR Forum 33, 6–12. September 1999.

Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges.

Optimisation methods for ranking functions with multiple parameters. In Proceedings of the

15th ACM international conference on Information and knowledge management (CIKM '06),

2006.

ASSETS Metadata-Based Indexing And Ranking Page 35 D2.2.3 V1.3

6. Concluding Remarks

This deliverable describes the software components developed within the activities

conducted for the tasks "T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking"

and "T2.2.3 Text Indexing and Retrieval".

The provided services are, respectively, query recommendation, metadata based ranking

and query log processing and indexing.

The document focuses on the technical aspects of the developed services, including: UML

diagrams, services description and API documentation, software packaging and installation,

and the user manual.

